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initial and boundary conditions for the Levermore flux-limited diffusion approximation lo the 
equation of radiative transfer. NC 1988 Academic Press, Inc. 

1. INTRODUCTION 

In an article by Levermore and Pomraning [ I]. a flux-limited diffusion equation 
was derived as an approximation to the equation of radiative transfer. This 
diffusion equation is qualitatively more accurate than the classic diffusion 
approximations, namely isotropic (Eddington j diffusion theory [2,3] and 
asymptotic diffusion theory [2,4], in that it is flux-limited. By the term ‘TIux- 
limited” we mean that the magnitude of the radiative flux cannot exceed the 
product of the radiation energy density and the speed of light. This flux-limited 
description has been incorporated into several radiative transfer codes [S] and for 
essentially infinite medium problems (those for which boundary effects are small) 
has been found to be quantitatively as well as qualitatively more accurate than the 
classic, non-flux-limited diffusion theories. 

One of the shortcomings of the treatment of Levermore and Pomraning [l] is 
their handling of the initial and boundary conditions for the diffusion equation. 
Very ad hoc conditions were suggested in their paper, and the authors 
acknowledged that these conditions, in particular the boundary condition, needed 
to be reformulated in a better manner. An attempt to improve upon the boundary 
condition has recently been reported by Pomraning [IS]. His analysis is a significant 
improvement over the original suggestion of Levermore and Pomraning [l] and 
leads to a boundary condition which predicts the exact interior solution for transfer 
problems when a single asymptotic mode is present. It is only for this class of 
problems for which the flux-limited diffusion equation of Lever-more [7] and 
Levermore and Pomraning [l] has the capability of being exact, and with the 
Pomraning [6] boundary condition this capability is fulfilled. However, as pointed 
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out in the concluding remarks of the Pomraning [6] paper, his boundary condition 
also has a somewhat ad hoc flavor to it. He suggests that his analysis, while a clear 
improvement over that of Levermore and Pomraning [ 11, be considered as an 
interim result, awaiting a rigorous boundary layer analysis which would give the 
boundary condition for the flux-limited diffusion equation in a completely non- 
ad hoc manner. 

In this paper, we present that boundary (and initial) layer analysis and derive 
what we believe are the proper initial and boundary conditions for the flux-limited 
diffusion equation of Levermore [7] and Levermore and Pomraning [l]. The 
initial condition we obtain agrees with that suggested in an ad hoc manner by 
Levermore and Pomraning [ 1 ]. The boundary condition we derive contains the 
boundary condition of Pomraning [6] as a limiting case. The analysis we use 
closely parallels that of Larsen and Keller [3], who discussed the use of 
asymptotics to derive the isotropic (Eddington) diffusion approximation to the 
linear transport equation. 

2. FORMULATION 

The transport equation for the specific intensity of radiation, ?(r, Q, t), has the 
form [ 1, 23 

where r, !A, and t are the spatial, angular, and temporal variables; c is the speed of 
light; o~(T, t) is the absorption coefficient, suitably corrected for induced emission; 
cs(r, t) is the scattering coefficient; o = (T, + B, is the total interaction coefftcient; 
B(r, I) is the blackbody energy density; and E(r, tj is the radiation energy density as 
defined by 

In writing Eq. (1) we have assumed local thermodynamic equilibrium for the matter 
and isotropic and coherent scattering of photons. Equations (1) and (2) may be 
considered to be either frequency dependent with the frequency variable suppressed, 
or grey (frequency integrated) equations. The initial and boundary conditions on 
Eq. (1) are given by 

T(r, Cl, 0) = A(r, Q), (3) 

I”(r,, R, t) = r(rs, R, tj, n-R<O, (4) 

where n is a unit outward normal vector at the surface point rs, and the functions A 
and r are the prescribed initial and boundary data. 
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To use asymptotics to obtain a diffusion approximation to Eqs. (I j through (4 1, 
we assume that B,, Go, and B are slowly varying functions of their arguments r and 
t. Pldditionally, we assume that the function A in the initial condition given by 
Eq. (3) is slowly varying with respect to r, and that the function r in the boundary 
condition given by Eq. (4) is slowly varying with respect to both r,. and i. Then. 
outside of any initial (early time) and boundary (near the surface) layers, it is 
reasonable to expect that 7 will satisfy, to a good approximation, some simpler 
description of radiative transfer than that given by Eqs. (I) through (4). We obtain 
this simpler description. which will consist of a flux-iimited diffusion equation and 
associated initial and boundary conditions for the energy density E(r, t)* by 
asymptotics. 

Following Larsen and Keller 131, we decompose the specific intensity of 
radiation ?(r. Q. t) into the sum of four intensities, namely: (1) I(r, tj. the 
interior solution, presumed to be an accurate approximation to 7 away from initial 
and boundary layers; (2) Z,(r, Q2? t), the contribution to the innial (early time) layer 
(away from the boundary layer) which is presumed to decay rapidly in time; 
(3) Ih(r, Q’-, f). the contribution to the boundary (near surface) layer (away from the 
initial layer) which is presumed to decay rapidly in space in a direction normal to 
the surface; and (4) lib(r, C2, t), the contribution to the initial-boundary (early time 
and near surface) layer which is presumed to decay rapidly in both space and time. 
These four Intensities satisfy the equations 

s = i, b, ib, 

with the total intensity given by 

Following Levermore and Pomraning [I], we analyze Eq. (5) by assuming that 
away from initial and boundary layers, the transport solution is separable in space- 
time and angle. This implies that we can write 

where, for consistency, we must have 
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The ansatz given by Eq. (9) is the basis of the flux-limited diffusion equation 
discussed by Levermore and Pomraning [ 1 J. An earlier derivation of this diffusion 
equation has been given by Levermore [7], who used the Chapman-Enskog 
formalism from the kinetic theory of gases. By either treatment, the results are 

where the flux-limiting parameter R is given by 

R= IRI; 
VE R= -- 

WJE' (12) 

and the effective albedo Q is defined by 

(13) 

In this approximation, the radiation energy density E(r, t) satisfies the diffusion 
equation 

;+ ;VE =o,(B-E), 
i ) 

where ;1 is an explicit function of R given by 

1(R)=i(coth R-k). 

As discussed by Levermore and Pomraning [ 11, this diffusion equation is fully flux- 
limited, and contains both isotropic (Eddingtonj and asymptotic diffusion as 
limiting cases. 

The required initial condition on Eq. (14) is derived by analyzing the initial layer 
problem for Zi(r, a, t), which we take up in the next section. Similarly, the boun- 
dary condition on Eq. (14) is obtained by analyzing the boundary layer problem for 
ZJr, a, I), which is treated in Section 4 of this paper. The initial-boundary layer 
problem for Zib(r, Q, t) does not need to be considered unless one is specifically 
interested in the short time behavior of the solution near the boundary. In 
particular, an analysis of Zi, plays no role in obtaining the initial and boundary 
conditions on the flux-limited diffusion equation given by Eq. (14). 
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3. THE INITIAL LAYER 

To obtain the initial condition on Eq. (14), we need to analyze the initial layer 
problem given by Eq. (6) with x= i. If we neglect the spatial derivative in this 
equation we have 

The spatial derivative can be neglected since in the initial layer the time dependence 
is assumed strong, whereas the spatial dependence (away from boundary layers) is 
assumed weak. To be more quantitative, we note that outside of the boundary 
layer, Eq. (8) simplifies to, since the boundary layer contributions are essentially 
zero, 

and we assume that ii decays exponentially in time with a characteristic time given 
by a mean collision time, or less. That is, Ii is assumed to fall off in time as 
exp( -cat), or faster. Any weaker time dependence is assumed to be carried by the 
interior solution Z(r, .Q, t) in Eq. (17). 

To solve Eq. (16), we note that this equation hoids at each (interior) space point 
r; r is simply a parameter in this equation. Further, the cross sections crs and 0 in 
Eq. (16) are essentially independent of time and can be taken as their t = 0 values, 
Thus, Eq. (16) is a first-order linear equation with constant coefficients and hence 
easily solved. Integration of Eq. (16) over all solid angle gives 

which has the solution 

where Ei(r = 0) is the constant of integration. Since cu < cr, Eq. (19) shows that E,(r) 
falls off too slowly to qualify as the fast scale initial layer contribution; we have 
already stated that Ei(t) must fall off at least as fast as exp( -ccofj. Hence we must 
set Ei(t = 0) = 0 to achieve 

Ei( I) = 0, 

which is the only acceptable solution to Eq. (16). 
Now, using Eq. (17) in the initial condition given by Eq. (3) gives 

Z(r, R, 0) + ZJr, !a, 0) = A(r, !A). 

(20) 

(21) 
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Integration of Eq. (21) over all solid angle, making use of Eq. (20), gives 

as the initial condition for the flux-limited diffusion equation. This is the same 
initial condition suggested earlier on an ad hoc basis Cl]. 

We note that Eq. (20) implies that there is no fast variation in the initial layer. 
On physical grounds, this is a very desirable result in that all of the initial energy in 
the problem is included in the initial condition for the diffusion equation. This 
implies energy conservation; the initial energy for the transport problem is all 
accounted for in the diffusion process. 

4. THE BOUNDARY LAYER 

We now analyze the boundary layer equation for I,, given by Eq. (6) with x= b. 
This will yield the boundary condition for the diffusion equation. We neglect the 
time and tangential spatial derivatives in this equation because of the assumed 
dominance of the normal spatial derivative. We then have 

(23) 

where -? is a local spatial coordinate normal to the surface at rs, and pointing into 
the medium. The variable p is the cosine of the angle between the photon flight 
direction Q and the z axis; i.e., p = -n .a. where n is a unit outward normal vector 
at rs. Since I, is assumed to decay rapidly with z, in particular faster than exponen- 
tial with a mean free path characteristic distance (i.e., faster than exp( --(Tz)), 
Eq. (23) can be taken to hold for 06 z < a. Equation (23 j holds at each (interior) 
time t; I is simply a parameter in Eq. (23). Further, the cross sections os and D in 
Eq. (23) are taken as their values at r = rs. The boundary condition on Eq. (23) is 
found by combining Eqs. (4) and (8). One finds 

J(f,, Q, t) + &(O, 0, tj = r(rs, Q2, t), P>Oo, (24) 

where the zero argument in I,(O, Q, t) means z = 0. In writing Eq. (24) we have 
neglected li and lib, since away from the initial layer these terms are negligibly 
small. 

We remove the azimuthal (4) dependence from Eqs. (23) and (24) by integrating 
over 4. If, for any function h(~j, we define 
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then an integration of Eqs. (23) and (24) over 4 yields 

IJO, p, t) = r7(rs, p. l) - I(r,, i.& I), p >o. (27’s 

Since 1, vanishes at 5 = LO, we recognize Eqs. (26) and (27) as the classical 
halfspace albedo problem, with constant cross sections and with time t appearing 
simply as a parameter. The right-hand side of Eq. (27) plays the role of the 
incoming intensity for the Tb problem. 

The solution of Eqs. (26) and (27) for I,,t,(z, p, r) can be represented as a linear 
combination of the Case eigenmodes [a], consisting of a single discrete decaying 
mode and the continuum decaying modes. For this solution to be a fast scale boun- 
dary layer, decaying faster than exp( -a=), the discrete mode must not be present; i: 
decays toe slowly. This discrete mode is accounted for by the diffusion component 
(the interior solution r) in Eq. (8). Thus, as discussed by Case and Zweifel [8]? the 
right-hand side of Eq. (27) must be orthogonal over 0 < ;l< I, with weight function 
W(r(), to the discrete mode. That is, we must have 

Here b,+ (,u) is the discrete Case decaying mode which is given by [S] 

where \I~, is the positive root of the dispersion relationship 

and w is the single scatter albedo (at space point rJ and time r) given by 

The weight function W(p), which also is a function of :I‘: is discussed by Case and 
Zweifel [8]. Now, from Eq. (9) we have 

I(rr, p, t) = cE(r,, t) $!P), (32) 

and hence Eq. (28) can be written 

Equation (33) is the boundary condition for the diffusion equation given by 
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Eq. (14). We now algebraically manipulate this result to put it into a more conven- 
tional and explicit form. 

We rewrite the expression for $(sL), Eq. (ll), making use of Eq. (12), as 

and hence, since VE is predominantly perpendicular to the surface, 

~(~) _ 1 R coth R - (p dE/dz)/(aoE) 
2R” c coth’ R - pz I. 

(34) 

(35) 

Thus we have, since the z axis points along -I, 

cE$(pj _ 1 CR coth RI E+ 0 .VEjl(flw) 
2R’ [ coth’ R - pz I. (36) 

Using Eq. (36) in Eq. (33) and grouping terms in a convenient way, we arrive at 

Fi,c = cy[ctE + /?(n . VE)/go], (37) 

as the boundary condition for the diffusion equation at each surface point r, and 
time t. Here F,,, is the incident radiative flux at rS and t, given by 

and the coefftcients CI, /?, and 1’ in Eq. (37) are defined as 

u’coth R a’ 
! 

~Hbc) 
‘=8(1-t~)r’~R ,, ” (v,--)(coth2 R-p’)’ 

Iz’ 
s 

I 
B=s(l-,i,)l;.*R* o & 

P*H(P) 
(v,-jc)(coth’R-,u*)’ 

(39) 

PO) 

(41) 

The function H(p) occurring in the above expressions for CI, j?, and y is 
Chandrasekhar’s H-function [9] which is related in a simple way to the weight 
function IV(p) [S]. 

We note that Eq. (37) is a mixed (Robbin) boundary condition, which is quite 
common for a diffusion equation. However, the coefficients CI, /I, and o in this 
boundary condition depend in a complex nonlinear way upon the solution E, 
Hence this boundary condition, just as the diffusion equation itself, is nonlinear. We 
also note that x and p are functions of two variables, namely the flux limiting 
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parameter R as defined by Eq. (12), and the single scatter albedo \I’ as defined by 
Eq. (31). The coefficient 1 is a function of the single variable IV, but is also a 
functional of the incoming distribution r(p). 

It is instructive to consider several iimiting cases of the general boundary 
condition given by Eq. (37). We first consider the coefficient y in this equation. 
which we write 

y = )flV, P(,D)]~ (42) 

is easily shown For r(/l) = K, a constant independent of p (isotropic incidence)Y i 
that 

y[w, K] = 1. 

i.e., the functional 7 is unity for all values of ~1. For pure scattering ( 
absorption (1~ = O), we find 

(43 j 

II’ = I) and pure 

We tabulate results from Eqs. (.44) and (45) in Table I for the special case 
G)=pCln, II = -1, 0, 1, using the numerical values for the moments of the 
H-function given by Chandrasekhar [9]. From this table we conclude that 
~[Iv, r(p)] depends in a moderate way (neither exceptionally strongly or weakly) 
upon both the single scatter albedo N, and the incident angular distribution F(tii;. 

We next consider the coefficients c( and 0. which we write 

a = ct( w, R); /I = /qlL., R). 

We find in the purely scattering (IV = 1) case 

(46; 

and in the purely absorbing (r~ = 0) case 

(47) 

sinh(2R) 
(49) 

(50) 
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TABLE I 

The Coefficient y[~; ,u”] 

n 

H’ = 1 

(Pure scattering j 
II‘ = 0 

(Pure absorption) 

-1 1.1547 2.0000 
0 1 .oooo 1.0000 
1 0.9384 0.6667 

Equations (47) through (50) lead to the following limits for small and large R: 

a(l, 0) = l/4; ,!3( 1, 0) = 0.710446,‘4, (51 i 

a(0, 0) = /!qo, 0) = l/4, (52) 

a( 1, LC ) = 0.6296; B(L R)g 0.6296/R. (53 1 

For arbitrary 11: and small R, we find 

cI(w, 0) = l/4; /l(w, 0)= [2vo-w(l-w-“2 H,]/8, (54) 

where H, is the first moment of the H-function. tabulated as a function of 1~ by 
Chandrasekhar [9]. Table II gives fi(n~, 0) for various values of II’. We note from 
this table a relatively weak dependence of P(NJ, 0) upon 1~. For arbitrary ~7 and large 
R, we find 

a(w, a) = 
wH( 1) 

8( 1 - w)lr2(v<, - 1)’ 

/)(M’, R) R 
wN( 1 ) 

8( 1 - w)~,~(v, - 1) R’ 

(53 

(56) 

where H( 1) is the H-function evaluated at p= 1. 
It is particularly instructive to examine the case of a purely scattering (1~ = 1) 

source-free (B = 0) medium with weak gradients (R = 0) and an isotropic incident 
intensity [f’(,u) = constant]. These conditions imply w = 1, and the appropriate 
limits for CI, p, and 1’ are given by Eqs. (43) and (51). Using these in the boundary 
condition given by Eq. (37), we find 

Fin, =f [E+ (0.710446)(n. FE)/o]. (57) 

We see that the cE term on the right-hand side of Eq. (57 j is multiplied by $, which 
is required if the diffusion description is to give the exact transport solution for a 
purely scattering, source-free halfspace with an isotropic incident flux. Additionally, 
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TABLE II 

The Coefficient (3( IV, 0) 

0. 0.2500 
0.1 0.2432 
0.2 0.2351 
0.3 0.2259 
0.4 0.2165 
0.5 0.2078 
0.6 0.2000 
0.7 0.1933 
0.8 0.1874 
0.9 0.1822 
0.95 0.1798 
1.00 0.1776 

we see that the n . VE term in Eq. (57) is multiplied by (0.710446)/o, the linear 
extrapolation distance for the purely scattering Milne problem CS]. This is an 
intuitively appealing result. 

Finally. we consider the case of a source-free, spatially independent halfspace 
with a single discrete (asymptotic) mode extant. This is the case treated earlier by 
Pomraning [16]. Here we have 

IV = 0 = constant, (58j 

and R. vo: and ~0 are related according to 

Rv,o = 1; 1 = WV, tanh-I( li’k,), (59) 

v. = coth R; o = (tanh R)/R. (60) 

Omitting the straightforward but considerable algebraic detail, we find in this case 
that 

fl/(cro) = d = linear extrapolation distance, 

where the function X(-p) is related to H(!c) by [S] 

H(~)(.l-w)‘:‘(v.+~)X(-CI)= 1. i63i i / 

The function A’( - ~1) is discussed and tabulated for various values of ~1 by Case and 
Zweifel [S]. The results given by Eqs. (61 j and (62) agree with those given earlier 
by Pomraning [6], who considered this case alone. 
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In summary, E.q. (37) represents the boundary condition for the flux-limited 
diffusion equation given by Eq. (14) in the general case. The material beginning 
with Eq. (42) deals with various limiting and special cases of this general result. 
Equations (14), (22), and (37), then, constitute the complete flux-limited diffusion 
approximation to the equation of transfer, consisting of a diffusion equation given 
by Eq. (14), an initial condition given by Eq. (22), and a mixed (Robbinj boundary 
condition given by Eq. (37). 

5. CONCLUDING REMARKS 

Although the equation of transfer is linear in the specific intensity of radiation, 
the flux-limited diffusion approximation is nonlinear in the radiative energy density, 
through the parameters R and w as defined by Eqs. (12).and (13). In particular, the 
boundary condition given by Eq. (37) is nonlinear because, in addition to the 
explicit w appearing in this equation, the parameters CI and p depend upon R. These 
nonlinearities preclude any large class of analytic solutions, which then implies the 
need for a numerical solution method. A natural question which arises in this 
context is how one might treat these nonlinearities in a numerical setting. Although 
a detailed discussion of this question is well beyond the scope of this paper, a few 
words might be in order. 

To date, these nonlinearities have generally been handled by treating them 
explicitly in a time dependent setting. That is, the diffusion coefficient 3L/oo in 
Eq. (14), and any nonlinearities in the boundary condition such as in CI, /3, and w in 
Eq. (37), are lagged in time, using results from the solution at the old time step. An 
obvious improvement to this explicit treatment (but obviously more expensive per 
time step in computing time) is to iterate the nonlinearities to achieve a time 
implicit treatment. Another possibility, as yet untried, for treating the nonlinearities 
in both the differential equation and the boundary condition is a complete Newton- 
Raphson linearization. The best strategy among these three, and other, possibilities 
is unknown at this time, and may well be problem dependent. The numerical 
analysis dealing with flux-limited diffusion theory is a subject needing and deserving 
a great deal of attention. 

ACKNOWLEDGMENT 

This work was partially supported by the National Science Foundation. 

REFERENCES 

1. C. D. LEVERMORE AND G. C. POMKANING, .4p.J. 248, 321 (1981). 
2. G. C. POMRANING, The Equations of Radiation Hydrodynamics (Pergamon Press, Oxford, 1973). 



FLUX-LIMITED DIFFUSION THEORY 85 

3. E. W, LARSEN AND J. R. KELLER, J. Math. Phys. 15, 75 (1974). 
4. A. M. WINSLOW, Nucl. Sci. Eizg. 32, 101 (1968). 
5. t. D. LEVERMORE. Lawrence Livermore National Laboratory. private communicatio= ( 1986 i. 
6. G. C. POMRANIPG. J. Qrcanr. Spectrosc. Rad. Tratqf: 36, 325 (1986). 
7. C. D. LEVERMORE. it Chapman-Enskog Approach to Flu-y-Limited Diffusim Theory, Lawrence 

Livermore National Laboratory Report No. UCID-18229, 1979 cunpubiished I_ 
8. K. M. CASE AND P. F. ZWHFEL, Linear Transport Theor! (Addison-Wesley. Reading. MA. 1967) 
9. S. CWANDRASEKHAR. Radiurire Transfer (Dover, New York. 1960). 


